ECMO: Basic Principles and Effects on Pharmacokinetics

Jasleen Bolina, PharmD, BCPS, BCCCP MICU Clinical Pharmacy Specialist Baptist Medical Center South

Disclosure

Jasleen Bolina has nothing to disclose concerning possible financial or personal relationships with commercial entities (or their competitors) mentioned in this presentation.

Objectives

- Describe the different forms of ECMO and indications for each
- Describe typical anticoagulation monitoring in patients on ECMO
- Recognize common alterations in pharmacokinetics due to ECMO
- Formulate appropriate dosage adjustments or monitoring parameters for medications affected by ECMO

Extra Corporeal Membrane Oxygenation (ECMO)

Overview, Indications, and General Monitoring

Types of ECMO

	Venovenous (VV)	Venoarterial (VA)
•	Respiratory support only Single or double venous cannula Pulmonary blood flow Higher perfusion rate	 Respiratory and hemodynamic support Arterial and venous cannula Blood bypasses heart and lungs Reduced perfusion rate

Venovenous ECMO Cannulation

Venoarterial ECMO Cannulation

 $\overline{7}$

Indications: VV ECMO

- Acute respiratory distress syndrome
- Bridge to lung transplant
- Primary graft dysfunction following lung transplant
- Status asthmaticus/lung hyperinflation
- Lung rest
- Acute massive pulmonary embolism or hemorrhage

Indications: VA ECMO

- Cardiogenic shock
- Post cardiotomy
- Post heart transplant
- Bridge to transplant
- Chronic cardiomyopathy
- Periprocedural support for high-risk PCI
- Acute decompensated pulmonary hypertension

Contraindications

Ineligible for transplant

Disseminated malignancy

Severe brain injury

Unwitnessed cardiac arrest

Prolonged CPR without adequate perfusion

Unrepaired aortic dissection

Severe aortic regurgitation

Severe chronic organ dysfunction

Compliance

ECMO Monitoring

Which of the following is NOT an indication for VV ECMO

- A. Lung rest
- B. Status asthmaticus
- C. Cardiogenic Shock
- D. Acute respiratory distress syndrome
- ${\ensuremath{\mathbb E}}.$ All of these are indications for VV ECMO

Which of the following is NOT an indication for VV ECMO

- A. Lung rest
- B. Status asthmaticus
- **C.** Cardiogenic Shock
- D. Acute respiratory distress syndrome
- ${\ensuremath{\mathbb E}}.$ All of these are indications for VV ECMO

Anticoagulation

Hypercoaguable State

Extracorporeal circuit introduces a foreign surface Altered inflammatory and coagulation pathway response

Hypercoaguable state

ELSO Anticoagulation Guidelines Sieg A, et al. Critical Care Nurse. 2019 Apr; 39(2): 29-44.

Anticoagulants of Choice

Anticoagulation Monitoring

	Activated Clotting Time (ACT)	Activated Partial Thromboplastin Time (aPTT)	Anti-factor Xa
Availability	Point of care test	Laboratory test	Laboratory test
Goal Range	180-220 seconds	47-79 seconds*	0.3-0.7 IU/mL
Considerations	Can be affected by thrombocytopenia, hypothermia, hemodilution	Measures time to fibrin formation Not affected by platelet function	Measures effect of UFH Not affected by coagulopathy, thrombocytopenia, or hemodilution Can be affected by hyperlipidemia, hyperbilirubemia, and hemolysis

Pharmacokinetics

Effects on Pharmacokinetics

Drug Sequestration

Altered Volume of Distribution (Vd)

Altered Clearance (Cl)

Dzierba A, et al. Critical Care. 2017; 21

Cheng V, et al. J Thorac Dis. 2018; 10(5): S629-S641.

What influences drug alterations? • Molecular size

• pKa

- Ionization of drug
- Lipophilicity
- Plasma protein binding

Saturation of binding sites

Dilution of plasma proteins

Reintroduction of drug

Reduced drug clearance

Which of the following is true about drug sequestration?

- A. Sequestration is more likely to affect hydrophilic drugs
- B. Drugs that have lower protein binding may deposit on ECMO tubing
- C. Drugs may be reintroduced even after discontinuation of therapy
- D. Sequestration is due to the small surface area of the membrane oxygenator

Which of the following is true about drug sequestration?

- A. Sequestration is more likely to affect hydrophilic drugs
- B. Drugs that have lower protein binding may deposit on ECMO tubing
- C. Drugs may be reintroduced even after discontinuation of therapy
- D. Sequestration is due to the small surface area of the membrane oxygenator

Overview of drug therapy

Therapies affected by ECMO

Analgesia and Sedation

	Lipophilicity (Log P)	Protein Binding (%)	Volume of Distribution (L)	Sequestration
Morphine	0.9	30-40	70-350	Minimal- moderate
Hydromorphone	1.62-1.8	8-19	280	Minimal- moderate
Dexmedetomidine	2.8	94-94	118	Significant
Propofol	3.8	95-99	4200	Significant
Midazolam	3.9	97	70-217	Significant
Fentanyl	4.1	80-85	280-420	Significant

Cheng V, et al. J Thorac Dis. 2018; 10(5): S629-S641. Ha MA, et al. Pharmacotherapy. 2017; 37(2): 221-235. Landolf KM, et al. Pharmacotherapy. 2020; 40(5): 389-397.

Sedation and ECMO

- Retrospective cohort analysis
- **Population:** Adults with severe ARDS receiving a continuous infusion of at least one sedative for \geq 48 hr
- Study groups: Patients on ECMO vs those not on ECMO
- **Primary objective:** Maximum 6-hour total sedative requirement
- Secondary objectives:
 - Time to maximum sedation
 - Total amount of sedation to reach maximum sedation

Sedation and ECMO

• Results:

	ECMO (n=34)	Non-ECMO (n=60)	P Value
Maximum 6-hour sedative requirement	118 mg	60 mg	0.004
Time to maximum sedation	4 days	1 day	0.003
Infusion rate at time of maximum sedation	10 mg/hr	6 mg/hr	0.04

• Conclusion:

- Those on ECMO received almost twice the amount of sedation as those not on ECMO.
- Limitation: Age and concomitant fentanyl use may have influenced the amount of sedation used.

Analgesia and Sedation

Fentanyl, Midazolam, Dexmedetomidine, Propofol

- More lipophilic
- Greater degree of drug sequestration
- Higher dose requirements

Morphine, Hydromorphone

- Less lipophilic
- Lower degree of drug sequestration
- May be preferable to fentanyl

Antimicrobials

	Lipophilicity (Log P)	Protein Binding (%)	Volume of Distribution (L)	Sequestration
Vancomycin	-3.1	50-60	28-70	Minimal
Ceftriaxone	-1.7	95	5.78 - 13.5	Significant
Meropenem	-0.69	2	15-20	Minimal
Aminoglycosides	<0	<30	14-21	Minimal
Piperacillin/ Tazobactam	0.67	30	16.8	Minimal
Voriconazole	1	58	322	Significant
Ampicillin	1.35	15-30	20-27	Minimal- moderate
Fluoroquinolones	<2.3	20-40	89-189	Minimal

Cheng V, et al. J Thorac Dis. 2018; 10(5): S629-S641. Ha MA, et al. Pharmacotherapy. 2017; 37(2): 221-235.

Beta-lactams

Aminoglycosides

Vancomycin: Donadello K, et al

- · Retrospective, matched cohort study of critically ill adult patients
- Study Groups: ECMO, Control
- Objective: To compare the population pharmacokinetics of vancomycin when given as a continuous infusion in critically ill patients with ECMO to patients without ECMO

	Daily dose		
CrCL, L/minute			
>150	45 mg/kg		
120 to 150	40 mg/kg		
80 to 120	35 mg/kg		
50 to 80	25 mg/kg		
25 to 50	14 mg/kg		
<25 or oliguria	7 mg/kg		
Continuous renal replacement therapy	14 mg/kg		

Table 1 Daily vancomycin doses according to the creatinine clearance (CrCL)

Oliguria was defined as urine output ≤0.5 mL/kg/h.

Vancomycin: Donadello K, et al

• Results

	ECMO (n=11)	Control (n=11)
Inadequate drug levels at 12 hr	18%	0%
Inadequate drug levels at 24 hr	36%	9%
Vd	99.3 L	92.3 L
Cl	2.4 L/hr	2.3 L/hr

Conclusion

- Vd and Cl were similar between both groups
- Fewer patients in the ECMO group attained adequate concentrations at 12 and 24 hours

Vancomycin: Park SJ, et al

- Retrospective observational study
- **Population:** Adult patients admitted to the ICU
- Study groups: ECMO vs control
- **Primary objective:** To determine if conventional vancomycin dosing based on total body weight and renal function is adequate in patients on ECMO

Additional Outcomes:

- Total daily dosage
- Dosing frequency
- Initial trough levels prior to third dose
- Maintenance trough levels at steady state (around 5th dose)

Vancomycin: Park SJ, et al

	ECMO (n=20)	Control (n=60)	P Value
Subtherapeutic initial trough	95%	66.67%	0.013
Average time to therapeutic trough	84.59 hr	57.41 hr	0.013

- Dose Adjustments
 - ECMO
 - Following the $4^{\rm th}$ dose, the average daily dose significantly increased to 42.24 mg/kg and the frequency increased to 2.9 times/day (p=0.014)
 - Control
 - The frequency (2.11 to 2.37 times/day) and total daily dose (22.91 mg/kg to 31.61 mg/kg) did not significantly change prior to the 4th dose (p=0.071, p=0.350)

Park SJ, et al. PLoS ONE. 2015; 10(11): e0141016.

Vancomycin: Park SJ, et al

Park SJ, et al. PLoS ONE. 2015; 10(11): e0141016.

Vancomycin

Cheng V, et al. J Thorac Dis. 2018; 10(5): S629-S641. Dzierba A, et al. Critical Care. 2017; 21 Sherwin et al. Clin Ther. 2016 Sep; 38(9): 1976-1994.

Doses of amikacin may need to be increased in the setting of ECMO due to:

- A. Increased Vd
- B. Increased protein binding
- C. Increased Cl
- D. Increased drug sequestration

Doses of amikacin may need to be increased in the setting of ECMO due to:

- A. Increased Vd
- B. Increased protein binding
- C. Increased Cl
- D. Increased drug sequestration

Conclusion

Pulmonary or cardiopulmonary support

Potential for coagulopathy

Alterations in pharmacokinetics

Adjustment in doses or therapy may be warranted

References

- Brodie D, Slutsky AS, Combes A. Extracorporeal life support for adults with respiratory failure and related indications. JAMA. 2019; 322(6): 557-568.
- Dzierba AL, Abrams D, Brodie D. Medicating patients during extracorporeal membrane oxygenation: the evidence is building. Critical Care. 2017; 21(66): 1-7.
- Cheng V, Abdul-Aziz M, Roberts JA, et al. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J Thorac Dis. 2018; 10(5): S629-S641.
- Makdisi G, Wang I. Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis. 2015; 7(7): E166-E176.
- Sherwin J, Heath T, Watt K. Pharmacokineticss and dosing of anti-infective drugs in patients on extracorporeal membrane oxygenation: A review of the current literature. Clin Ther. 2016 Sep; 38(9): 1976-1994.
- Nigoghossian CD, Dzierba AL, Etheridge J, et al. Effect of extracorporeal membrane oxygenation use on sedative requirements in patients with severe acute respiratory distress syndrome. Pharmacotherapy. 2016; 36(6): 607-616.
- Ruiz-Ramos J, Gimeno R, Perez F, et al. Pharmacokinetics of amikacin in critical care patients on extracorporeal device. ASAIO Journal. 2018; 64: 686-688.

References

- Donadello K, Roberts JA, Cristallini S, Beumier M, Shekar K, Jacobs F, Belhaj A, Vincent JL, Backer D, Taccone FS. Vancomycin population kinetics during extracorporeal membrane oxygenation therapy: a matched cohort study. Critical Care. 2014; 18: 632-642.
- Park SJ, Yang JH, Park HJ, In YW, Lee YM, Cho YH, Chung CR, Park CM, Jeon K, Suh GY. Trough concentrations of vancomycin in patients undergoing extracorporeal membrane oxygenation. PLoS ONE. 2015; 10(11): e0141016.
- Abrams D, Brodie D. Extracorporeal membrane oxygenation for adult respiratory failure. CHEST. 2017; 1-11.
- Chung M, Shiloh AL, Carlese A. Monitoring of the adult patient on venoarterial extracorporeal membrane oxygenation. The Scientific World Journal. 2014; 1-10.
- ELSO Anticoagulation Guidelines. The Extracorporeal Life Support Organization (ELSO). Ann Arbor: 2014.
- Sieg A, Pandya K, Winstead R, et al. Overview of pharmacologic considerations in extracorporeal membrane oxygenation. Critical Care Nurse. 2019 Apr; 39(2): 29-44.
- Ha MA, Sieg AC. Evaluation of altered drug pharmacokinetics in critically ill adults receiving extracorporeal membrane oxygenation. Pharmacotherapy. 2017; 37(2): 221-235.
- Landolf KM, Rivosecchi RM, Gomez H, et al. Comparison of hydromorphone versus fentanyl-based sedation in extracorporeal membrane oxygenation: A propensity-matched analysis. Pharmacotherapy. 2020; 40(5): 389-397

Questions?

jkbolina@baptistfirst.org